jueves, 3 de diciembre de 2009

FENÓMENOS ELÉCTRICOS Y MAGNÉTICOS

ELECTRICIDAD Y MAGNETISMO

MAGNETISMO:

Los materiales magnéticos tienen una doble importancia en los dispositivos de conversión de energía.
Se pueden obtener grandes densidades de flujo con niveles relativamente bajos de fuerza magnetomotriz.
Por otro lado, se pueden usar para delimitar y dirigir a los campos magnéticos en unas trayectorias definidas: hacen en magnetismo el papel de conductores, al igual que los conductores eléctricos en electricidad.
Para el estudio del transformador es necesario el conocimiento de los circuitos magnéticos y de las leyes que los rigen. En el análisis de los circuitos magnéticos habituales se emplean las ecuaciones de Maxwell en su forma integral, con lo cual resultan leyes de uso común más sencillas. En concreto se utilizarán:
- la ley de Ampere,- la ley de conservación del flujo,- la ley de inducción de Faraday, y- las propiedades magnéticas de los materiales empleados.
(del griego elektron,ámbar, y del latín magnes, - etis, imán) Existe una estrecha relación entre la electricidad y el magnetismo dado que son fenómenos complementarios en lo que tiene que ver con muchas de sus aplicaciones. El magnetismo puede considerarse como la facultad que posee un cuerpo (denominado genéricamente imán) para atraer o repeler a otros cuerpos según su material y carga eléctrica. Es posible diferenciar tres clases de imanes:
a. Imanes naturales: Variedad de óxido de hierro coincida como magnetita. El magnetismo es uno de los aspectos del electromagnetismo, que es una de las fuerzas fundamentales de la naturaleza (junto con la gravedad, la fuerza nuclear fuerte y la fuerza nuclear débil). Las fuerzas magnéticas son producidas por el movimiento de partículas cargadas, como por ejemplo electrones, lo que indica la estrecha relación entre la electricidad y el magnetismo. El marco que aúna ambas fuerzas se denomina teoría electromagnética (véase Radiación electromagnética). La manifestación más conocida del magnetismo es la fuerza de atracción o repulsión que actúa entre los materiales ferromagnéticos como el hierro. Desde la antigüedad se ha constatado la interacción entre el hierro o minerales como la magnetita con el campo magnético terrestre, de forma que el polo norte de un imán tiende a apuntar al polo sur de otro. En realidad, si se disponen de los instrumentos de medida adecuados, en toda la materia se pueden observar efectos más sutiles del magnetismo (como paramagnetismo y diamagnetismo). Recientemente, estos efectos han proporcionado claves importantes para comprender la estructura atómica de la materia.
b. Imanes artificiales: Su formarán se fundamenta en la transmisión de las propiedades magnéticas a una barra de acero, mediante diversos procedimientos. Sus formas más comunes son la cilíndrica, recta y de herradura.
c. Electroimanes: Consisten en piezas de hierro alrededor de las cuales se enrolla un conductor aislado. Las propiedades magnéticas aparecen cuando se hace circular una corriente eléctrica por el conductor. (Ver Electroimán). Es notable la característica de los imanes que consiste en tener dos polos llamados Norte y Sur los cuales componen en dos mitades todo el imán, estos dos polos son indivisibles, o sea si tomamos un imán recto y lo partimos a la mitad cada una de estas mitades será un nuevo imán con dos polos Norte y Sur, y así sucesivamente en cada participan tendremos dos nuevos imanes. Esto es conocido en la física teórica como la imposibilidad de obtener un monopolo magnético. Para caracterizar la interacción magnética de dos o más cuerpos, y mostrar cómo se transforma el espacio en las inmediaciones de un imán se utiliza el concepto de campo magnético, el cual se puede representar mediante las llamadas líneas de fuerza ó líneas de inducción magnética, éstas líneas son como unos hilos invisibles que unen los polos Norte y Sur de un imán.
Brújula: Instrumento formado por una aguja imantada suspendida sobre un eje, que gira a causa del campo magnético terrestre y señala siempre aproximadamente la dirección N-S. Sirve para orientarse sobre la superficie de la Tierra.
Campo.
Campo eléctrico: Región del espacio en la que se dejan sentir las fuerzas de atracción o repulsión que una carga eléctrica ejerce sobre otra de distinto o igual signo, respectivamente, situada en otro punto de ese espacio
ELECTROMAGNETISMO:

Electromagnetismo es la parte de la física que estudia los campos electromagnéticos, sus interacciones con la materia y, en general, la electricidad y el magnetismo. Estudio de los fenómenos producidos por la interrelación entre los campos eléctrico y magnético. Toda carga eléctrica en movimiento crea a su alrededor un campo magnético, con propiedades similares a las de un imán, y a su vez todo campo magnético ejerce una fuerza sobre los conductores por los que circula una corriente eléctrica o la crea en éstos cuando varía el flujo de líneas magnéticas que los atraviesa. De ello se deduce que la energía eléctrica puede ser transformada en trabajo mecánico (motor eléctrico) y que la energía mecánica puede convertirse en electricidad (fenómeno de inducción magnética).
El electromagnetismo estudia conjuntamente los fenómenos físicos en los cuales intervienen cargas eléctricas en reposo y en movimiento, así como los relativos a los campos magnéticos y a sus efectos sobre diversas sustancias.
El electromagnetismo, por lo tanto estudia los fenómenos eléctricos y magnéticos que se unen en una sola teoría, que se resumen en cuatro ecuaciones vectoriales que relacionan campos eléctricos y magnéticos conocidas como las ecuaciones de Maxwell. Gracias a la invención de la pila se pudieron efectuar los estudios de los efectos magnéticos que se originan por el paso de corriente eléctrica a través de un conductor.
La idea propuesta y materializada por el físico escocés James Clerk Maxwell (1831-1879), quien luego de estudiar los fenómenos eléctricos y magnéticos concluyó que son producto de una misma interacción, denominada interacción electromagnética, lo que le llevó a formular, alrededor del año 1850, las ecuaciones antes citadas, que llevan su nombre, en las que se describe el comportamiento del campo electromagnético. Estas ecuaciones dicen esencialmente que:
· Existen portadores de cargas eléctricas, y las líneas del campo eléctrico parten desde las cargas positivas y terminan en las cargas negativas.· No existen portadores de carga magnética; por lo tanto, el número de líneas del campo magnético que salen desde un volumen dado, debe ser igual al número de líneas que entran a dicho volumen.· Un imán en movimiento, o, dicho de otra forma, un campo magnético variable, genera una corriente eléctrica llamada corriente inducida.· cargas eléctricas en movimiento generan campos magnéticos.
Campo magnético de las corrientes
Oersted descubrió en 1820 que una corriente eléctrica (cargas en movimiento) está rodeada por un campo magnético. Una ley fundamental de Amper permite computar la magitud del campo magnético debido a una corriente eléctrica. Consideremos una longitud elemental (infinitesimal) , dl, de un alambre que transporta una corriente I.
La electricidad:
es un fenómeno físico cuyo origen son las cargas eléctricas y cuya energía se manifiesta en fenómenos mecánicos, térmicos, luminosos y químicos, entre otros. Se puede observar de forma natural en fenómenos atmosféricos, por ejemplo los rayos, que son descargas eléctricas producidas por la transferencia de energía entre la ionosfera y la superficie terrestre (proceso complejo del que los rayos solo forman una parte). Otros mecanismos eléctricos naturales los podemos encontrar en procesos biológicos, como el funcionamiento del sistema nervioso. Es la base del funcionamiento de muchas máquinas, desde pequeños electrodomésticos hasta sistemas de gran potencia como los trenes de alta velocidad, y asimismo de todos los dispositivos electrónicos. Además es esencial para la producción de sustancias químicas como el aluminio y el cloro.
También se denomina electricidad a la rama de la física que estudia las leyes que rigen el fenómeno y a la rama de la tecnologia que la usa en aplicaciones prácticas. Desde que, en 1831, Faraday descubriera la forma de producir corrientes eléctricas por inducción —fenómeno que permite transformar energía mecánica en energía eléctrica— se ha convertido en una de las formas de energía más importantes para el desarrollo tecnológico debido a su facilidad de generación y distribución y a su gran número de aplicaciones.

La electricidad en una de sus manifestaciones naturales: el relámpago
La electricidad es originada por las cargas eléctricas, en reposo o en movimiento, y las interacciones entre ellas. Cuando varias cargas eléctricas están en reposo relativo se ejercen entre ellas fuerzas electrostáticas Cuando las cargas eléctricas están en movimiento relativo se ejercen también fuerzas magnéticas Se conocen dos tipos de cargas eléctricas: positivas y negativas. Los átomos que conforman la materia contienen partículas subatómicas positivas (protones), negativas (electrones) y neutras (neutrones). También hay partículas elementales cargadas que en condiciones normales no son estables, por lo que se manifiestan sólo en determinados procesos como los rayos cósmicos y las desintegraciones radiactivas
La electricidad y el magnetismo son dos aspectos diferentes de un mismo fenómeno físico, denominado electromagnetismo descrito matemáticamente por las ecuaciones de Maxwell El movimiento de una carga eléctrica produce un campo magnético la variación de un campo magnético produce un campo eléctrico y el movimiento acelerado de cargas eléctricas genera ondas electromagnéticas (como en las descargas de rayos que pueden escucharse en los receptores de radio AM
Debido a las crecientes aplicaciones de la electricidad como vector energético como base de las telecomunicaciones y para el procesamiento de información, uno de los principales desafíos contemporáneos es generarla de modo más eficiente y con el mínimo impacto ambiental.

4 comentarios: